
+

Ansible F5 Workshop



● What is Ansible, its common use cases
● How Ansible works and terminology
● Running Ansible playbooks
● Network modules
● An introduction to roles
● An introduction to Ansible Galaxy

What You Will Learn



MANAGING NETWORKS
HASN’T CHANGED

IN 30 YEARS.



● Networks are mission critical
● Every network is a unique snowflake
● Ad-hoc changes that proliferate
● Vendor specific implementations
● Testing is expensive/impossible

Managing networks hasn't changed in 30 years



According to Gartner

Source: Gartner, Look Beyond Network Vendors for Network Innovation. January 2018. Gartner ID: G00349636. (n=64)



● Compute is no longer the slowest link in the chain
● Businesses demand that networks deliver at the speed of cloud
● Automation of repeatable tasks
● Bridge silos

Automation considerations



Red Hat Ansible network automation is enterprise software for automating and 
managing IT infrastructure.

As a vendor agnostic framework Ansible can automate F5 (BIG-IP, BIG-IQ), Arista 
(EOS), Cisco (IOS, IOS XR, NX-OS), Juniper (JunOS), Open vSwitch and VyOS.

Ansible Tower is an enterprise framework for controlling, securing and managing 
your Ansible automation with a UI and RESTful API.

What is Ansible?



SIMPLE POWERFUL AGENTLESS

Gather information and audit

Configuration management

Workflow orchestration

Manage ALL IT infrastructure

Human readable automation

No special coding skills needed

Tasks executed in order

Get productive quickly

Agentless architecture

Uses OpenSSH and paramiko

No agents to exploit or update

More efficient & more secure



Ansible: The Universal Automation Framework

SERVERS

NETWORKING

SYS/CLOUD ADMIN

NET OPS

STORAGE 
ADMINS STORAGE



ANSIBLE NETWORK AUTOMATION

ansible.com/networking
  

630+ 
Networking 

modules

45 
Networking 
platforms

https://www.ansible.com/networking


Common use cases

● Backup and restore device configurations
● Upgrade network device OS
● Ensure configuration compliance
● Apply patches to address CVE
● Generate dynamic documentation

Basically anything an operator can do manually, Ansible can automate.



How Ansible Works

NETWORKING
DEVICES

LINUX/WINDOWS
HOSTS

Module code is 
copied to the 
managed node, 
executed, then 
removed

Module code is 
executed locally 
on the control 
node



ANSIBLE AUTOMATION ENGINE

CMDB 

USERS

INVENTORY
HOSTS

NETWORK 
DEVICES

PLUGINS

CLI

MODULES

ANSIBLE 
PLAYBOOK

CORE NETWORK COMMUNITY

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD



ANSIBLE AUTOMATION ENGINE

CMDB 

USERS

INVENTORY
HOSTS

NETWORK 
DEVICES

PLUGINS

CLI

MODULES

ANSIBLE 
PLAYBOOK

CORE NETWORK COMMUNITY

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

  PLAYBOOKS ARE WRITTEN IN YAML
  Tasks are executed sequentially
  Invoke Ansible modules



ANSIBLE AUTOMATION ENGINE

CMDB 

USERS

INVENTORY
HOSTS

NETWORK 
DEVICES

PLUGINS

CLI

ANSIBLE 
PLAYBOOK

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

  MODULES ARE “TOOLS IN THE TOOLKIT”
  Python, Powershell, or any language
  Extend Ansible simplicy to the entire stack

MODULES

CORE NETWORK COMMUNITY



ANSIBLE AUTOMATION ENGINE

CMDB 

USERS

INVENTORY
HOSTS

NETWORK 
DEVICES

CLI

ANSIBLE 
PLAYBOOK

PUBLIC / PRIVATE
CLOUD

PUBLIC / PRIVATE
CLOUD

  PLUGINS ARE “GEARS IN THE ENGINE”
  Code that plugs into the core engine
  Adaptability for various uses & platforms

CORE NETWORK COMMUNITY

MODULES PLUGINS



10.1.1.2
10.1.1.3
172.16.1.1
172.16.1.2
192.168.1.2
192.168.1.3

Understanding Inventory



[lb]

f5 ansible_host=34.199.128.69

[control]

ansible ansible_host=107.23.192.217

[webservers]

host1 ansible_host=107.22.141.4

host2 ansible_host=54.146.162.192

Understanding Inventory
There is always a group called "all" by default

[DC:children]

lb

webservers

[rhel:children]

control

webservers

Groups can be nested



[all:vars]

ansible_user=student2

ansible_ssh_pass=ansible

ansible_port=22

[lb]

f5 ansible_host=34.199.128.69 ansible_user=admin private_ip=172.16.26.136 ansible_ssh_pass=admin

[webservers]

host1 ansible_host=107.22.141.4 ansible_user=ec2-user private_ip=172.16.170.190

host2 ansible_host=54.146.162.192 ansible_user=ec2-user private_ip=172.16.160.13

Inventory - variables

Group variables apply for all devices 
in that group

Host variables apply to the host and 
override group vars



A Sample Playbook
---

- name: BIG-IP SETUP

  hosts: lb

  connection: local

  gather_facts: false

  tasks:

   - name: CREATE NODES

      bigip_node:

        server: "f5.ansible.com"

        user: "admin"

        password: "admin"

        server_port: "8443"

        host: 192.168.0.1

        name: "webserver01"

● Playbook is a list of plays.

● Each play is a list of tasks.

● Tasks invoke modules.

● A playbook can contain more 

than one play.



Exploring the Lab Environment

Lab Time

In this lab you will explore the lab environment and build 
familiarity with the lab inventory.

Approximate time: 10 mins



Playbook definition for network automation

● Target play execution using hosts
● Define the connection : local
● About gather_facts



[student1@ansible ~]$ ansible-playbook bigip-facts.yml

PLAY [GRAB F5 FACTS] ***********************************************************

TASK [COLLECT BIG-IP FACTS] ****************************************************

ok: [f5]

PLAY RECAP *********************************************************************

f5                         : ok=1    changed=0    unreachable=0    failed=0

Running a playbook



[student1@ansible ~]$ ansible-playbook bigip-facts.yml -v

[student1@ip-172-16-207-49 1.1-get-facts]$ ansible-playbook bigip-facts.yml -v

PLAY [GRAB F5 FACTS] ************************************************************

TASK [COLLECT BIG-IP FACTS] *****************************************************

ok: [f5] => {"ansible_facts": {"system_info": {"base_mac_address": 

"0A:D1:27:C1:84:76", "blade_temperature": [], "chassis_slot_information": [], 

.

<output truncated for readability>

Displaying output
Use the optional verbose flag during playbook execution



$ ansible-playbook bigip-facts.yml --limit f5node1

Limiting Playbook execution
Playbook execution can be limited to a subset of devices using the --limit flag.

Forget a flag / option ?
Just type ansible-playbook then press enter



    "bigip_facts": {

        "ansible_facts": {

            "system_info": {

                "base_mac_address": "0A:D1:27:C1:84:76"

            }

        }

  }

Quick Refresher on JSON 
Structured Data is easy to work with

bigip_facts['ansible_facts']['system_info']['base_mac_address'] 

0A:D1:27:C1:84:76



Registering the output
The register parameter is used to collect the output of a task execution. The output of the task 
is 'registered' in a variable which can then be used for subsequent tasks.

    - name: COLLECT BIG-IP FACTS
      bigip_facts:
        include: system_info
        server: "{{private_ip}}"
        user: "{{ansible_user}}"
        password: "{{ansible_ssh_pass}}"
        server_port: 8443
      register: bigip_facts 



Displaying output - The "debug" module
The debug module is used like a "print" statement in most programming languages. 

- name: DISPLAY ONLY THE MAC ADDRESS
  debug:
    var: bigip_facts['ansible_facts']['system_info']['base_mac_address']

TASK [DISPLAY ONLY THE MAC 
ADDRESS]*****************************************
ok: [f5] => {
    "bigip_facts['ansible_facts']['system_info']['base_mac_address']": 
"0A:D1:27:C1:84:76"
}



● Tags allow the user to selectively execute tasks within a play.
● Multiple tags can be associated with a given task.
● Tags can also be applied to entire plays or roles.

Limiting tasks within a play

Tags are invoked using the --tags flag while running the playbook

[user@ansible]$ ansible-playbook bigip-facts.yml --tags=debug



● --skip-tags allows you to skip everything

Limiting tasks within a play - or skip them!

Tags are invoked using the --tags flag while running the playbook

[user@ansible]$ ansible-playbook bigip-facts.yml --skip-tags=debug



A note about variables
Other than the user defined variables, Ansible supports many inbuilt variables. For example:

Variable Explanation

ansible_* Output of fact gathering

inventory_hostname magic inbuilt variable that is the name of 
the host as defined in inventory

hostvars magic inbuilt variable dictionary variable 
whose key is inventory_hostname
e.g. 
hostvars[webserver1].my_variabl
e



Exercise 1.1 -Using Ansible to gather data from F5 BIG-IP

Lab Time

In this lab you will write your first playbook and run it to gather facts from a F5 
BIG-IP load balancer. 

Approximate time: 15 mins



Modules

● Typically written in Python (but not limited to it)
● Modules are idempotent
● Modules take user input in the form of parameters

Modules do the actual work in Ansible, they are what gets executed in 
each playbook task.



● *_facts
● *_command
● *_config

More modules depending on 
platform

Network modules
Ansible modules for network automation typically references the vendor OS followed by the 
module name.

Arista EOS = eos_*
Cisco IOS/IOS-XE = ios_*
Cisco NX-OS = nxos_*
Cisco IOS-XR = iosxr_*
F5 BIG-IP = bigip_*
F5 BIG-IQ = bigiq_*
Juniper Junos = junos_*
VyOS = vyos_*



Modules Documentation
https://docs.ansible.com/



[user@ansible]$ ansible-doc bigip_facts

Modules Documentation
Documentation right on the command line

> BIGIP_FACTS    (/usr/lib/python2.7/site-packages/ansible/modules/network/f5/bigip_facts.py)

        Collect facts from F5 BIG-IP devices via iControl SOAP API

OPTIONS (= is mandatory):

- filter

        Shell-style glob matching string used to filter fact keys. Not applicable for software, provision, and system_info fact 
categories.

.

.



Using the F5 bigip_node module



Using the F5 bigip_node module

Information for connecting 
to F5 BIG-IP load balancer



Using the F5 bigip_node module

nodes being added
● host refers to the web server IP 

address
● name is a human identifiable trait 

can be the DNS name but does not depend on it



Using the F5 bigip_node module

Loops over all the web servers in 
the group webservers



Exercise 1.2 -Adding nodes to F5 BIG-IP

Lab Time

In this lab you will  creating a playbook that makes use of the BIG-IP node 
module to add two RHEL (Red Hat Enterprise Linux) web servers as nodes for 
the BIG-IP load balancer.

Approximate time: 15 mins



Using the F5 bigip_pool module



Using the F5 bigip_pool module

The name is a user defined name 
that we will add nodes to in a later 
exercise



Using the F5 bigip_pool module

The lb_method refers to the load 
balancing method, a full list is 
provided on the module 
documentation



Using the F5 bigip_pool module

The monitors parameter refers 
to the protocol that the F5 BIG-IP 
load balancer will be listening on



Using the F5 bigip_pool module

This monitor_type parameter is 
technically the default.  We can 
actually configure multiple 
monitors (protocols) 
simultaneously



F5 Web GUI



F5 Web GUI - Configuration 

Click on the pool to get more information. 
Monitor ‘http’ assigned to the pool.



Exercise 1.3 -Adding a load balancing pool

Lab Time

Demonstrate use of the BIG-IP pool module to configure a load balancing pool 
in BIG-IP device. A load balancing pool is a logical set of devices, such as web 
servers, that you group together to receive and process traffic.

Approximate time: 15 mins



Using the F5 bigip_pool_member module



F5 BIG-IP Web GUI

The web servers are now 
configured and can be found 
under the Members tab of 
http_pool



Exercise 1.4 -Adding members to a pool on F5

Lab Time

Demonstrate use of the BIG-IP pool member module to tie web server nodes 
into the load balancing pool http_pool created in the previous exercises.

Approximate time: 15 mins



Using the F5 bigip_virtual_server module



F5 BIG-IP Web GUI

The virtual server can be found 
under Local Traffic -> Virtual 
Servers



Exercise 1.5 -Adding a virtual server

Lab Time

Demonstrate use of the BIG-IP virtual server module to create a VIP (virtual 
IP).  The VIP will be tied to the http_pool created in earlier exercises.  Use a 
web browser to demonstrate the F5 load balancing between host1 and host2.

Approximate time: 15 mins



Deleting with the F5 bigip_node module

Using the state parameter with 
absent, the module will make 
sure the specified configuration is 
not existent (deleted)



Exercise 1.6 - Deleting F5 BIG-IP Configuration

Lab Time

Demonstrate use of the Ansible state parameter for modules.  The state 
parameter will remove a configuration from the F5 BIG-IP load balancer.

Approximate time: 15 mins



Block  



Block 



Block - Rescue



● If a task fails in the block, it will immediately go to rescue.
● If there is no rescue stanza, the Playbook will stop executing for the host it failed on.

● If there is a rescue stanza, the tasks under the rescue stanza will execute.
○ If any tasks under rescue fail, the Playbook will stop executing for the host it 

failed on.
○ If everything executes successfully under the rescue the Playbook will continue 

on like no failures happened.  The failure will be recorded in the Play Recap.

Block - Rescue
What happens when?



Exercise 1.7 -  Advanced: Error Handling

Lab Time

Demonstrate the use of the block and the rescue functionality for Ansible 
Playbooks.  This exercise will also tie the previous exercises into one holistic 
Playbook.

Approximate time: 30 mins



● Roles help simplify playbooks.
● Think of them as callable functions for repeated tasks.
● Roles can be distributed/shared; similar to libraries.

Roles
Roles are Playbooks

Directory StructureExample Playbook



Roles - really simple, but powerful



Ansible Galaxy
http://galaxy.ansible.com

● Ansible Galaxy is a hub for 
finding, reusing and sharing 
Ansible roles.

● Jump-start your automation 
project with content 
contributed and reviewed by 
the Ansible community.

http://galaxy.ansible.com


Next Steps
Thanks so much for joining the class.  Here are some next steps 
on how to get more information and join the community!



Bookmark the GitHub Project
https://www.github.com/network-automation

● Examples, samples and 
demos

● Run network topologies 
right on your laptop 

https://www.github.com/network-automation


● Slack
https://ansiblenetwork.slack.com
Join by clicking here https://bit.ly/2OfNEBr

● IRC
#ansible-network on freenode
http://webchat.freenode.net/?channels=ansible-network

Chat with us
Engage with the community

https://ansiblenetwork.slack.com
https://bit.ly/2OfNEBr
http://webchat.freenode.net/?channels=ansible-network


● It's easy to get started
https://ansible.com/get-started

● Learn about Ansible & F5
https://ansible.com/f5

● Instructor Led Classes
Class DO457: Ansible for Network Automation
https://red.ht/2MiAgvA

Next Steps

https://ansible.com/get-started
https://ansible.com/f5
https://red.ht/2MiAgvA


+


